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While symplectic integration methods based on operator splitting are well established in many branches
of science, high order methods for Hamiltonian systems that split in more than two parts have not
been studied in great detail. Here, we present several high order symplectic integrators for Hamiltonian
systems that can be split in exactly three integrable parts. We apply these techniques, as a practical
case, for the integration of the disordered, discrete nonlinear Schrödinger equation (DDNLS) and compare
their efficiencies. Three part split algorithms provide effective means to numerically study the asymptotic
behavior of wave packet spreading in the DDNLS – a hotly debated subject in current scientific literature.
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1. Introduction

Following the time evolution of a dynamical system is gener-
ally accomplished by solving its corresponding equations of mo-
tion. If, for instance, the system under consideration can be de-
scribed by an autonomous Hamiltonian function H(�q, �p), with �q,
�p respectively being vectors of the generalized coordinates and
momenta, the equations of motion can be readily derived via
Hamilton’s equations. One then attempts to determine the solu-
tion �x(t) = (�q(t), �p(t)), t > 0, for any given initial condition �x(0).
Formally this solution can be described by the action of the op-
erator etLH , with LH = ∑

i H pi ∂qi − Hqi ∂pi , on the initial condition,
i.e. �x(t) = etLH �x(0). The Hamiltonian is said to be integrable if the
action of this operator is known explicitly and the solution of the
Hamilton equations of motion can be written in a closed, analytic
form. Unfortunately, this task is rarely possible, but in most cases
the true solution can be approximated numerically. General pur-
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pose numerical integration methods for ordinary differential equa-
tions are capable of providing such approximations.

In this respect, the so-called symplectic integration techniques
are of particular interest, as they are explicitly designed for the
integration of Hamiltonian systems (see, for example, Chap. VI of
[1–3] and references therein). Assume that H(�q, �p) can be writ-
ten as H(�q, �p) = A(�q, �p) + B(�q, �p), so that the action of opera-
tors etL A and etLB is known, and the solution of their Hamil-
ton equations of motion can be written analytically, while eτ LH

does not permit a closed analytical solution of its equations of
motion. Then, a symplectic scheme for integrating the equations
of motion from time t to time t + τ consists of approximat-
ing the operator eτ LH = eτ (L A+LB ) by a product of j operators
eciτ L A and ediτ LB , which represent exact integrations of Hamil-
tonians A(�q, �p) and B(�q, �p) over times ciτ and diτ respectively,
i.e. eτ LH = ∏ j

i=1 eciτ L A ediτ LB +O(τn+1). The constants ci and di are
appropriately chosen to increase the order of the remainder of this
approximation. In practice, using this symplectic integrator (SI) we
approximate the dynamics of the real Hamiltonian H = A + B by
a new one, K = A + B +O(τn), introducing an error term of order
τn in each integration step – the SI is then said to be of order n.
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By their construction SIs preserve the symplectic nature of the
Hamiltonian system and keep bounded the error of the computed
value of H (which is an integral of the system, commonly re-
ferred as the ‘energy’) irrespectively of the total integration time.
Generally, this is not the case with non-symplectic integration al-
gorithms. Furthermore, many SIs permit the use of relatively large
integration time steps τ for acceptable levels of energy accuracy,
resulting in lower CPU time requirements. Due to these bene-
fits, SIs became a standard technique in Hamiltonian dynamics
with particular importance in long time integrations of multidi-
mensional systems. Several SIs of different orders based on this
operator splitting have been developed over the years by various
researchers [4–13].

2. Three part split symplectic integrators

In many cases the Hamiltonian can be written as a sum of the
system’s kinetic energy T (�p), dependent only on the momenta �p,
and the potential V (�q), dependent only on the positions �q. Then
the obvious choice for the application of a SI is to consider A ≡
T (�p) and B ≡ V (�q). Yet in many physical problems, the corre-
sponding Hamiltonian cannot be split in two integrable parts –
is it possible to exploit the advantages of SIs for such systems
as well? The answer to this question is positive as, theoretically,
symplectic integration schemes can be constructed for Hamilto-
nian systems that split in an arbitrary number of integrable parts
[14], [1, Sect. II.5]. Of course, the construction of high order SIs is
not an easy task as the number of involved operators increase ex-
tremely fast. This problem becomes even more complicated when
the Hamiltonian is split in three, instead of two, integrable parts.

In this paper we systematically present and test the perfor-
mance of efficient high order SIs for Hamiltonians that can be
split in three integrable parts. Particular cases of second order
three part split SIs, connected with astronomical problems, have
been reported in literature [15–18]. In these works, the considered
Hamiltonians were expressed as H = A(�q, �p) + B(�q, �p) + C(�q, �p),
the action of operators eτ L A , eτ LB and eτ LC was analytically ob-
tained, the second order SI of 5 steps

ABC2(τ ) = e
τ
2 L A e

τ
2 LB eτ LC e

τ
2 LB e

τ
2 L A (1)

was constructed, and its performance was studied. This integra-
tor represents the simplest form of a symmetric SI that can be
constructed for a Hamiltonian which splits in three distinct parts,
as was also explained in [19].

Some attempts to create three part split SIs of order higher
than two can be found in the literature. In [19] an integrator
of order four was obtained, while in [20] second and fourth or-
der integration schemes for a particular complicated molecular
model were presented. Recently, in [12,13] three part split SIs
especially oriented for near integrable Hamiltonians of the form
H = A + ε(B + C), with ε � 1, were constructed and applied to
a specific astronomical problem. In principle these integrators can
be applied to any Hamiltonian that split in three integrable parts,
and we will use some of them later on in Section 3.1.

A general way to obtain higher order SIs is the construction of
symmetric compositions of a basic symmetric second order inte-
grator. The number of times that this basic integrator is used in
a particular scheme determines the number of ‘stages’ of the con-
structed integrator. This approach led to the creation of efficient
schemes of order six, eight and ten [21,22] (see also [23] for a de-
tailed review of these methods), but to the best of our knowledge,
it has never been systematically applied to Hamiltonians that split
in three integrable parts.
2.1. Integrators of order four

We start the presentation of three part split methods by im-
plementing an algorithm based on the composition technique pro-
posed by Yoshida [4]. Starting from a SI S2n(τ ) of order 2n, we can
construct a SI S2n+2(τ ) of order 2n + 2, as

S2n+2(τ ) = S2n(z1τ )S2n(z0τ )S2n(z1τ ), (2)

with z0 = −21/(2n+1)/[2 − 21/(2n+1)] and z1 = 1/[2 − 21/(2n+1)].
Applying this procedure to the second order SI (1) we obtain the
fourth order SI of 3 stages and 13 steps

ABC4[Y](τ ) = ABC2(x1τ )ABC2(x0τ )ABC2(x1τ ), (3)

with

x0 = − 3
√

2

2 − 3
√

2
, x1 = 1

2 − 3
√

2
, (4)

and the subscript [Y] referring to the author of [4]. We note that
the ABC4

[Y] was explicitly constructed in [19].
We also consider another composition scheme which was intro-

duced in [24] and studied in [21] (where it was named ‘s5odr4’)
and [22]. This scheme has 5 stages and starting from a second or-
der SI, which in our case will be the ABC2 integrator (1), leads to
the fourth order integrator

ABC4[S](τ ) = ABC2(p2τ )ABC2(p2τ )ABC2((1 − 4p2)τ
)

× ABC2(p2τ )ABC2(p2τ ), (5)

with

p2 = 1

4 − 3
√

4
, 1 − 4p2 = −

3
√

4

4 − 3
√

4
, (6)

which has 21 steps. As in the previous case the subscript [S] refers
to the author of [24].

2.2. Integrators of order six

Eq. (2) can be used repeatedly to get higher order three part
split SIs. Although such a procedure for obtaining arbitrary SIs of
even order with exact coefficients is straightforward, it is not opti-
mal with respect to the number of required steps. As was already
pointed out in [4], alternative methods can be applied to obtain
more economical integrators of high order, although the new co-
efficients can no longer be given in analytical form. Several sixth
order SIs of this kind were presented in [4]. Here, we consider one
corresponding to ‘solution A’ in [4]

ABC6
[Y](τ ) = ABC2(w3τ )ABC2(w2τ )ABC2(w1τ )ABC2(w0τ )

× ABC2(w1τ )ABC2(w2τ )ABC2(w3τ ) (7)

having 7 stages and 29 steps. The exact values of wi , i = 0,1,2,3,
can be found in [1, Chap. V, Eq. (3.11)] and [4]. We include this
particular integrator in our study because according to [25] it
shows the best behavior among the ones presented in [4]. We also
note that this integrator corresponds to the ‘s7odr6’ method stud-
ied in [21].

In addition we include in our study other SIs of order six ob-
tained by composition techniques which involve more stages than
the ABC6

[Y] integrator. In particular we consider the ‘s9odr6b’ in-
tegrator of [21] which has 9 stages, i.e. 9 implementations of a
second order SI. Using the ABC2 method (1) as such an integrator
we end up with the scheme
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ABC6
[KL](τ )

= ABC2(δ1τ )ABC2(δ2τ )ABC2(δ3τ )ABC2(δ4τ )ABC2(δ5τ )

× ABC2(δ4τ )ABC2(δ3τ )ABC2(δ2τ )ABC2(δ1τ ) (8)

of 37 steps. We note that the subscript [KL] refers to the initials of
the authors of [21], and the exact values of constants δi , 1 � i � 5,
are given in the appendix of [21].

We also consider a sixth order SI based on a composition
method with 11 stages, which was introduced in [22]. This ap-
proach leads to the SI

ABC6
[SS](τ ) = ABC2(γ1τ )ABC2(γ2τ ) · · · ABC2(γ5τ )ABC2(γ6τ )

× ABC2(γ5τ ) · · · ABC2(γ2τ )ABC2(γ1τ ) (9)

which has 45 individual steps. Again the subscript [SS] refers to
the authors of [22], while the exact values of γi , 1 � i � 6, are
given in Eq. (11) of [22].

2.3. Integrators of order eight

In [4] five different composition methods of 15 stages that lead
to eighth order SIs are given. Among them the one named ‘so-
lution D’ exhibits the best behavior according to [22,25]. For this
reason we include this composition method in our study. The re-
sulting SI (using the constants wi , 0 � i � 7, appearing in Table 2
of [4]) is

ABC8
[Y](τ )

= ABC2(w7τ )ABC2(w6τ ) · · · ABC2(w1τ )ABC2(w0τ )

× ABC2(w1τ ) · · · ABC2(w6τ )ABC2(w7τ ) (10)

having 61 individual steps.
We also consider two more SIs of order eight obtained by com-

position techniques which involve more stages than the ABC8
[Y]

integrator. The first is based on the ‘s17odr8b’ integrator of [21]
which has 17 stages. Its form is

ABC8
[KL](τ ) = ABC2(δ1τ )ABC2(δ2τ ) · · · ABC2(δ8τ )ABC2(δ9τ )

× ABC2(δ8τ ) · · · ABC2(δ2τ )ABC2(δ1τ ). (11)

This integrator has 69 steps and its coefficients can be found in the
appendix of [21]. The second integrator is

ABC8
[SS](τ ) = ABC2(γ1τ )ABC2(γ2τ ) · · · ABC2(γ9τ )ABC2(γ10τ )

× ABC2(γ9τ ) · · · ABC2(γ2τ )ABC2(γ1τ ) (12)

and is based on a composition method with 19 stages presented
in Eq. (13) of [22].

2.4. An integrator of order ten

Finally, as an extreme case, we include in our study a SI of order
ten. In particular we consider the tenth order composition method
of 31 stages presented in Eq. (15) of [22], which leads to the SI

ABC10
[SS](τ )

= ABC2(γ1τ )ABC2(γ2τ ) · · · ABC2(γ15τ )ABC2(γ16τ )

× ABC2(γ15τ ) · · · ABC2(γ2τ )ABC2(γ1τ ) (13)

with 125 steps. We choose to not include additional integrators of
order ten based on composition techniques with more stages due
to the substantial increase of their complexity.

In Table 1 we present all the three part split SIs used in our
study providing information about their order, the number of their
stages and steps, as well as references for obtaining the values of
their coefficients.
Table 1
Information for the three part split SIs of Section 2. For each integrator we provide
its name, its order, the number of its stages (i.e. the appearances of the second order
SI ABC2 (1)) and the total number of individual steps. In the last column (named
‘Coefficients’) we indicate where the explicit values of the coefficients appearing in
each step can be found. For example (4) refers to Eq. (4) of this paper.

SI Order Stages Steps Coefficients

ABC2 2 1 5 (1)
ABC4

[Y] 4 3 13 (4)

ABC4
[S] 4 5 21 (6)

ABC6
[Y] 6 7 29 ‘Solution A’ in Table 1 of [4]

ABC6
[KL] 6 9 37 Table ‘s9odr6b’ in the appendix of [21]

ABC6
[SS] 6 11 45 Equation (11) of [22]

ABC8
[Y] 8 15 61 ‘Solution D’ in Table 2 of [4]

ABC8
[KL] 8 17 69 Table ‘s17odr8b’ in the appendix of [21]

ABC8
[SS] 8 19 77 Equation (13) of [22]

ABC10
[SS] 10 31 125 Equation (15) of [22]

3. Integration of the disordered discrete nonlinear Schrödinger
equation

In order to investigate the efficiency of the different SI schemes
we choose a multidimensional Hamiltonian system describing
a one-dimensional chain of coupled, nonlinear oscillators. In par-
ticular we consider the Hamiltonian of the disordered discrete
nonlinear Schrödinger equation (DDNLS)

HD =
∑

l

εl|ψl|2 + β

2
|ψl|4 − (

ψl+1ψ
∗
l + ψ∗

l+1ψl
)
, (14)

with complex variables ψl , lattice site indices l and nonlinearity
strength β � 0. The random on–site energies εl are chosen uni-
formly from the interval [− W

2 , W
2 ], with W denoting the disorder

strength. This model has two integrals of motion, as it conserves
both the energy (14) and the norm S = ∑

l |ψl|2, and has been
extensively investigated in order to determine the characteristics
of energy spreading in disordered systems [26–31]. These stud-
ies showed that the second moment, m2, of the norm distribution
grows subdiffusively in time t , as ta , and the asymptotic value
a = 1/3 of the exponent was theoretically predicted and numer-
ically verified. Currently open questions on the dynamics of disor-
dered systems concern the possible halt of wave packet’s spreading
for t → ∞ [32,33], as well as the characteristics of its chaotic be-
havior. Thus, providing the means to perform accurate long time
simulations for the DDNLS model within reasonable amounts of
computational time is essential.

Applying the canonical transformation ψl = (ql + ipl)/
√

2, ψ∗
l =

(ql − ipl)/
√

2, one can split (14) into a sum of three integrable
parts A, B and C as follows

H D =
∑

l

εl

2

(
q2

l + p2
l

) + β

8

(
q2

l + p2
l

)2

︸ ︷︷ ︸
A

−pl+1 pl︸ ︷︷ ︸
B

−ql+1ql︸ ︷︷ ︸
C

, (15)

where ql and pl are respectively generalized coordinates and mo-
menta. For these three parts the propagation of initial conditions
(ql, pl) at time t , to their final values (q′

l, p′
l) at time t + τ is given

by the operators

eτ L A :
{

q′
l = ql cos(αlτ ) + pl sin(αlτ ),

p′
l = pl cos(αlτ ) − ql sin(αlτ ),

(16)

eτ LB :
{

p′
l = pl,

q′
l = ql − (pl−1 + pl+1)τ ,

(17)

eτ LC :
{

q′
l = ql,

p′ = p + (q + q ), τ
(18)
l l l−1 l+1
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with αl = εl + β(q2
l + p2

l )/2. Thus, the DDNLS model represents an
ideal test case for our aforementioned three part split SIs.

3.1. Alternative integration approaches

In order to evaluate the efficiency of the integration schemes
presented in Section 2, we compare their performance to that
of other numerical techniques. In [27–30] numerical integration
schemes based on traditional two part split SIs were applied for
the integration of Hamiltonian (15). These approaches were based
on the split of (15) in two parts as A = A and B = B + C , and the
application of second order SIs of the so-called SABA-family [11];
note that the SABA1 integrator is more popularly known as the
Störmer–Verlet leapfrog integrator.

In our study we implement the second order SI SABA2 using
the split H D = A+ B. The integration of the A part is performed
according to (16), while different approaches for approximating
the action of eτ LB = eτ LB+C are followed. In [27,28] a numeri-
cal scheme based on Fourier transforms was implemented (see
appendix of [28] for more details) leading to a second order in-
tegrator with 5 steps, which we name SIFT2 in the following. An-
other approach is to split the B part in two integrable parts as
B = B + C and use the SABA2 SI to approximate its solution. This
means that we perform two successive two part splits in order
to integrate H D . This approach leads to a second order SI with
13 steps which we name SS2 (this scheme corresponds to the PQ
method used in [30]).

Extending the approach to split H D (15) in two parts where
the A = A is integrable and the B = B + C part is approximately
integrated either by another two part split SI or by an appropriate
Fourier transform scheme, we construct fourth order integrators,
which, to the best of our knowledge, have never being used before
for the integration of the DDNLS system. In particular, by applying
the composition procedure (2) to the SS2 integrator we construct
a fourth order integrator with 37 simple steps that we call SS4.
Following a similar approach for the SIFT2 integrator we obtain a
fourth order integrator with 13 steps, which we name SIFT4.

In addition, we use some recently introduced SIs [12,13] which
were particularly constructed for nearly integrable Hamiltonians,
i.e. Hamiltonians of the form H = A + εB, where the A = A
part is integrable and ε � 1. In particular, we consider the fourth
order integrators ABA864, ABA1064, ABAH864, ABAH1064, where
the A part is integrated explicitly and the B part either by the
Fourier transforms (for the ABA864, ABA1064 integrators) or by the
SABA2 SI (for the ABAH864, ABAH1064 integrators). We note that
the ABAH864 and ABAH1064 schemes were constructed from the
ABA864 and ABA1064 integrators respectively, by assuming that
the B part is a second order symmetric integrator [12] (which
in our study is the SABA2 scheme). This assumption leads to an
additional condition of the integrator’s coefficients, which in turn
results to the addition of some more steps in the integrator. As the
solution of the B part by Fourier transforms is a rather time con-
suming procedure, we decided to use this approach for solving the
B part when applying the ABA864 and ABA1064 methods which
have less individual steps.

In particular, based on the ABA864 and ABA1064 integrators of
[12] we consider the fourth order schemes

SIFT4
864(τ ) = eα1 L A eb1 LBeα2τ L A eb2τ LB · · · eα4τ L A eb4τ LBeα4τ L A

× eb3 LBeα3τ L A eb2τ LBeα2τ L A eb1τ LBeα1τ L A (19)

and

SIFT4
1064(τ ) = eα1τ L A eb1τ LBeα2τ L A eb2τ LB · · · eα4τ L A eb4τ LBeα5τ L A

× eb4τ LBeα4τ L A · · · eb2τ LBeα2τ L A eb1τ LBeα1τ L A ,

(20)
with 43 and 49 steps respectively, where the B = B + C part is
integrated according to the Fourier transform procedure presented
in [28]. The values of the coefficients appearing in (19) and (20)
are given in Table 3 of [12].

Similarly, based on the ABAH864 and ABAH1064 integrators
of [12] we consider the fourth order integrators

SS4
864(τ ) = eα1τ L A eb1τ LBeα2τ L A eb2τ LB · · · eα4τ L A eb4τ LBeα5τ L A

× eb4τ LBeα4τ L A · · · eb2τ LBeα2τ L A eb1τ LBeα1τ L A (21)

and

SS4
1064(τ ) = eα1τ L A eb1τ LBeα2τ L A eb2τ LB · · · eα5τ L A eb5τ LBeα5τ L A

× eb4τ LBeα4τ L A · · · eb2τ LBeα2τ L A eb1τ LBeα1τ L A , (22)

with 49 and 55 steps respectively, where the B = B + C part is
integrated by the SABA2 SI. The values of the coefficients appearing
in (21) and (22) are given in Table 4 of [12].

Of course, one can also use any general purpose non-symplectic
integrator for the integration of (15). One disadvantage of such
techniques is that different epochs of the system’s evolution are
computed with different accuracy since these integrators do not
keep the energy error bounded, but increase it as time increases.
In particular for the DDNLS model considered here the later stages
of its evolution, which are of most importance since we are mainly
interested in the asymptotic behavior of the system, are computed
less accurately. As a representative of non-symplectic integrators
we consider here the variable step Runge–Kutta method called
DOP853 [34], whose performance is controlled by the so-called
one-step accuracy δ.

4. Numerical results

In order to compare the performance of the various integra-
tion schemes we consider a particular disorder realization of the
DDNLS model (15) with N = 1024 lattice sites. We fix the total
norm of the system to S = 1, and following [29] we initially ex-
cite homogeneously 21 central sites by attributing to each one of
them the same constant norm, but with a random phase, while for
all other sites we set ql(0) = pl(0) = 0. Due to the nonlinear na-
ture of the model the norm distribution spreads, keeping of course
the total norm S = ∑

l(q
2
l + p2

l )/2 constant (S = 1). The perfor-
mance of the integration schemes is evaluated by their ability to
(a) reproduce correctly the dynamics, which is reflected in the sub-
diffusive increase of m2(t), (b) keep the values of the two integrals
H D , S constant, as monitored by the evolution of the absolute rel-
ative errors of the energy Er(t) = |[H D(t) − H D(0)]/H D(0)|, and
norm Sr(t) = |[S(t) − S(0)]/S(0)|, and (c) reduce the required CPU
time Tc(t) for the performed computations.

Results obtained by the second order SIs ABC2, SS2 and SIFT2

and the non-symplectic integrator DOP853 are presented in Fig. 1.
These integration methods correctly describe the system’s dynam-
ical evolution since for all of them the wave packet’s m2 shows
practically the same behavior (Fig. 1a). The time steps τ of the
three SIs were chosen so that all of them keep the relative energy
error practically constant at Er ≈ 10−5 (Fig. 1b). Since we are inter-
ested in the accurate long time integration of the DDNLS model we
use δ = 10−16 for the implementation of the DOP853 integrator.
For t ≈ 108 (which can be considered as a typical final integra-
tion time for long time simulations), this choice results practically
in the same energy error obtained by all other tested integrators.
From Fig. 1c we see that the relative norm error Sr increases for
all used methods, exhibiting larger values yet lower increase rates,
for the ABC2 and SS2 SIs. Nevertheless, our results indicate that all
methods can keep Sr to acceptable levels (e.g. Sr � 10−2), even for
long time integrations. It is worth noting that the Fourier trans-
forms used by the SIFT2 scheme for the integration of the B part
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Fig. 1. (Color online.) Results for the integration of H D (15) by the second order SIs ABC2 for τ = 0.005, SS2 for τ = 0.02, SIFT2 for τ = 0.05 [(r) red; (bl) black; (b) blue],
and the non-symplectic integrator DOP853 for δ = 10−16 [(g) green]: time evolution of the logarithm of (a) the second moment m2(t), (b) the absolute relative energy error
Er(t), (c) the absolute relative norm error Sr(t), and (d) the required CPU time Tc(t) in seconds.

Fig. 2. (Color online.) Results for the integration of H D (15) by the second order SI SIFT2 for τ = 0.05 [(gy) grey], and the fourth order SIs ABC4
[Y] for τ = 0.05, ABC4

[S] for

τ = 0.1, SIFT4 for τ = 0.125 and SS4 for τ = 0.1 [(g) green; (r) red; (b) blue; (bl) black]. The panels are as in Fig. 1. Note that in panel (d) the red, grey, and black curves
practically overlap.

Fig. 3. (Color online.) Results for the integration of H D (15) by the fourth order SI ABC4
[Y] for τ = 0.05 [(gy) grey], and the fourth order SIs SIFT4

864 for τ = 0.25, SIFT4
1064

for τ = 0.25, SS4
864 for τ = 0.25 and SS4

1064 for τ = 0.25 [(r) red; (g) green; (bl) black; (b) blue]. The panels are as in Fig. 1. Note that in panel (d) the red and grey curves

practically overlap.
of (15) preserve the norm S (see appendix of [28] for more de-
tails). For this reason the corresponding relative error Sr attains
smaller values than for the ABC2 and SS2 integrators (Fig. 1c). From
Fig. 1d we see that the SIFT2 integration scheme is the most effi-
cient one with respect to the CPU time needed for obtaining the
results of Fig. 1.

For this reason we use the SIFT2 SI as a reference method, and
compare in Fig. 2 its results with the ones obtained by the fourth
order SIs: ABC4

[Y], ABC4
[S], SIFT4 and SS4. These SIs reproduce cor-

rectly the evolution of m2 (Fig. 2a) and keep Er ≈ 10−5 (Fig. 2b).
Sr for the SIFT4 method shows a similar behavior to SIFT2, while
for all other integrators it attains larger, slowly increasing values,
which nevertheless remain acceptably small (Fig. 2c). The SIFT4

method requires more CPU time than SIFT2 (Fig. 2c), despite the
fact it utilizes a larger time step, because it implements the CPU
time consuming Fourier transforms more times. Consequently, the
development of higher order schemes based on Fourier transforms
for the integration of the B part of Hamiltonian (15) does not lead
to very efficient schemes, with respect to CPU time requirements.
From the remaining integrators of Fig. 2 the ABC4
[Y] requires the

least CPU time (Fig. 2d).
Therefore, we compare in Fig. 3 this integrator with the remain-

ing fourth order schemes that we consider in our study: SIFT4
864,

SIFT4
1064, SS4

864 and SS4
1064. Again all schemes accurately reproduce

the evolution of m2 (Fig. 3a) and keep the relative energy er-
ror practically constant, i.e. Er ≈ 10−5 (Fig. 3b). The SIFT4

864 and
SIFT4

1064 methods, which implement Fourier transforms, have again
small Sr values, while SS4

864 and SS4
1064 methods preserve the norm

quite accurately as they produce (larger) Sr values, which never-
theless remain practically constant (Fig. 3c). The good behavior of
the SS4

864 and SS4
1064 integrators is probably due to the fact that

the corresponding fourth order ABAH864 and ABAH1064 integra-
tors, on which they are based, also eliminate some higher order
terms.

From Fig. 3d we see that all methods considered in Fig. 3
require more or less similar CPU times, with the SS4

864 scheme
showing the best performance. Nevertheless, one should be more
careful about the significance of CPU time improvements. From the
results of Fig. 3 we see that using the SS4 with τ = 0.25 we need
864
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Fig. 4. (Color online.) Results for the integration of H D (15) by the fourth order SI SS4
864 for τ = 0.015625 [(gy) grey], and the sixth order SIs ABC6

[Y] for τ = 0.03, ABC6
[SS] for

τ = 0.125 and ABC6
[KL] for τ = 0.04 [(g) green; (r) red; (b) blue]. The panels are as in Fig. 1. Note that in panel (d) the green and blue curves practically overlap.

Fig. 5. (Color online.) Results for the integration of H D (15) by the sixth order SI ABC6
[SS] for τ = 0.125 [grey], the eight order SIs ABC8

[Y] for τ = 0.0625, ABC8
[SS] for τ = 0.2,

ABC8 for τ = 0.125 [(g) green; (r) red; (b) blue], and the tenth order SI ABC10 for τ = 0.2 [(bl) black].
[KL] [SS]
∼ 1.2 times less CPU time than the ABC4
[Y] with τ = 0.05, which is

the best performing scheme among the ones considered in Figs. 1
and 2. Comparing the SS4

864 method with the SS2 and SIFT2 meth-
ods usually used in numerical studies of the DDNLS model [27–31]
we see that the gain factor increases even more. In particular, SS4

864
scheme requires ∼ 1.4 and ∼ 2.0 times less CPU time than the
SIFT2 with τ = 0.05 and the SS2 with τ = 0.02 respectively (Fig. 1).
Although one might argue that these CPU time gain factors are not
too big, we should keep in mind that long time simulations up
to t = 107–108 of the DDNLS model with N ∼ 1000 sites could re-
quire (depending on the particular computer used) up to ∼ 10 days
of computations. Thus a gain factor of 2 is practically significant as
it can considerably reduce the computation time.

To keep Er ≈ 10−5 most of the studied SIs of order higher than
four require large integration steps, which are already outside the
stability domain of these algorithms. In order to avoid this situa-
tion we lowered the relative energy error to Er ≈ 10−10 for the
comparative study of these methods. From the results of Fig. 4
we see that, as expected, the sixth order SIs ABC6

[Y], ABC6
[SS] and

ABC6
[KL] are more efficient than the SS4

864 which showed the best
performance among all integration schemes of Figs. 1–3, as they
correctly reproduce the evolution of m2 (Fig. 4a), keep bounded
both the energy (Fig. 4b) and the norm (Fig. 4c) relative errors
(although a slight increase is observed for Sr ) and require less CPU
time (Fig. 4d).

Implementing SIs of even higher order we obtain methods with
even better performances (namely schemes ABC8

[Y], ABC8
[SS], ABC8

[KL]

and ABC10
[SS]) than ABC6

[SS] (Fig. 5). Nevertheless, only the increase
of the SI’s order is not sufficient to guarantee improvement of
the computational behavior, as the simultaneous growth of steps
could augment the CPU time requirements. For instance, this is
why ABC8

[Y] and ABC10
[SS] require more CPU time than ABC6

[SS] and

ABC8
[SS] respectively (Fig. 5d).

Our results indicate that the construction of efficient triple
split SIs can allow the integration of the DDNLS for longer times,
and numerically tackle questions about the asymptotic behavior of
wave packets. We note that the ABC8

[SS] SI required the less CPU
time among all tested schemes (Fig. 5d).

5. Conclusions and discussion

In summary, we presented ways to use SIs for Hamiltonian
systems that do not split in two integrable parts, as traditional
symplectic methods require, but in three. For such systems we
considered several high order three part split SIs based on already
developed composition methods and emphasized their practical
importance. In particular, we showed that such three part split
SIs are more efficient numerical schemes than other symplectic
and non-symplectic methods in terms of both accuracy and CPU
time requirements. These characteristics are of particular impor-
tance for the long time integration of multidimensional systems
like the DDNLS model, whose asymptotic behavior is currently a
very debatable issue.

Many of the studied integration schemes showed a quite satis-
factory behavior with respect to both their accuracy and efficiency.
For example integrator SS4

864 required the least CPU time among all
tested schemes of order up to four and kept practically constant
also the relative error of the system’s second integral of motion
i.e. its norm. In addition, all algorithms based on the integration
of the B = B + C part of Hamiltonian (15) via Fourier transforms,
i.e. methods SIFT2, SIFT4, SIFT4

864 and SIFT4
1064 succeeded in keep-

ing the relative error Sr very low (although it increased with in-
tegration time). A drawback of these methods is that, due to the
applications of Fourier transforms, they require the number of lat-
tice sites to be 2k , k ∈ N

∗ , although this is not always the case
in numerical simulations. Also schemes referred as ABC methods,
which are based on the fact that the studied Hamiltonian (15) is
split in exactly three integrable parts, proved to be quite efficient
methods, whose performance generally improve with increasing
order.

We hope that our results will draw the interest of the com-
munity in the construction of three part split SIs, and will initiate
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future research both for the theoretical development of new, im-
proved integrators of this type, as well as for their applications
to different dynamical systems. Keeping in mind that such SIs can
provide efficient numerical schemes for the long time integration
of Hamiltonian systems with many degrees of freedom (like the
DDNLS model), it would be interesting to investigate if the possible
addition of a corrector term can improve their accuracy, as done
for traditional two part split methods (see e.g. [11]).
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